Электролиз золота из морской воды. Глава xv извлечение золота из морской воды Извлечение золота из морской воды

Несмотря на то что ныне известно не менее 60 растворенных в морской воде элементов, в промышленных масштабах извлекается всего лишь четыре. Это натрий, хлор (обычная поваренная соль), магний и некоторые его соединения, а также бром. В качестве побочных отходов в процессе получения поваренной соли или при извлечении магния добывают некоторые соединения кальция и калия. Обычно эти продукты получают либо в результате экстракции из морской воды, либо при переработке водорослей, концентрирующих кальций и калий. Следует, однако, отметить, что промышленное извлечение перечисленных элементов непосредственно из морской воды все еще не освоено. Предпринимались многочисленные попытки экстрагировать другие минеральные соединения из морской воды, однако промышленная добыча оказалась безуспешной. Запатентовано также немало способов извлечения из морской воды поваренной соли, магния и его соединений, брома, йода, калия, сульфата кальция, золота и серебра (Baudin, 1916; Cernik, 1926; Niccali, 1925; S. О. Petterson, 1928; Vienne, 1949).

Извлечение поваренной соли

Систематическое получение соли из морской воды было начато в Китае намного раньше 2200 г. до н. э. Веками многие народы были зависимы от моря как источника соли (Armstrong, Miall,1946). И сейчас соль, добываемая из морской воды простым выпариванием солнечными лучами, занимает значительную долю в общем балансе потребления соли такими странами, как Китай, Индия, Япония, Турция и Филиппины. Ежегодно во всем мире производится около 6 млн. т соли. Как правило, для производства соли выпариванием из морской воды необходим жаркий климат с сухими ветрами. Однако помимо близости моря и жаркого климата требуется соблюдение еще ряда условий: слабая водопроницаемость грунта испарительных бассейнов, наличие обширных низменных площадей, лежащих ниже уровня моря или затопляемых морскими приливами, малое количество осадков в течение месяцев активного испарения, отсутствие разбавляющего влияния речных пресных вод и, наконец, в связи с низкой стоимостью добычи соли - наличие дешевых транспортных средств либо близость рынков сбыта.

Около 5% всей соли, потребляемой Соединенными Штатами, производится испарением, преимущественно в районе залива Сан-Франциско, где этот промысел был начат еще в 1852 г. На рис. 5 показаны искусственные испарительные бассейны близ южной конечности залива Сан-Франциско. Здесь с общей площади около 80 кв. миль "Лесли салт компани" ежегодно добывает примерно 1,2 млн. т соли. Аналогичные соляные промыслы находятся также в верховьях заливов Ньюпорт и Сан-Диего в Южной Калифорнии; их годовая производительность составляет 100 тыс. т (Emery, 1960). Пуск морской воды в испарительные бассейны близ залива Сан-Франциско осуществляется в период полной воды через шлюзные ворота в дамбе, ограждающей бассейн от моря. Морская вода выдерживается здесь до тех пор, пока значительная ее часть не испарится и не наступит садка заключенных в ней солей.


Рис. 6. Механические скреперы используются для снятия верхнего слоя закристаллизовавшейся соли. К моменту "уборки соляного урожая" мощность слоя соли обычно достигает 4-6 дюймов.

Сульфат кальция кристаллизуется из раствора одним из первых. После осаждения на дно солей сульфата кальция оставшаяся рапа осторожно переводится в садочный бассейн, где вследствие испарения происходит дальнейшее сгущение раствора до начала осаждения хлорида натрия. Выпаривание рапы продолжается до момента достижения ею удельного веса около 1,28, то есть до начала садки солей магния. На этом этапе соляной раствор носит название горького маточного рассола. Рассол извлекают из садочного бассейна и переправляют на другие предприятия, где из него получают различные соединения магния, бром и другие соли. После удаления рассола в садочный бассейн вновь заливают свежую рапу и весь цикл получения хлорида натрия повторяется. К 1 августа на дне таких бассейнов накапливается слой хлорида натрия толщиной 4-6 дюймов. Выборка соли производится при помощи механических скреперов и погрузчиков (рис. 6); затем соль отмывается от различных примесей морской водой и складируется в виде больших конусообразных насыпей (рис. 7). Соль, идущая для промышленного использования, в большинстве случаев не подвергается дальнейшей очистке. Однако ее дополнительно очищают, если она предназначается для пищевого потребления населением. Содержание NaCl в рафинированном продукте превышает 99,9%. Стоимость соли, полученной путем свободного испарения морской воды под воздействием солнца, колеблется в США от 10 долл. за 1 т сырого продукта близ места добычи до 150 долл. за 1 т очищенной и расфасованной поваренной соли.

Схема добычи соли из морской воды примерно одинакова во всем мире, тем не менее в ряде стран дешевая рабочая сила позволяет видоизменять этот процесс.

В странах иного климата, например в Швеции и в Советском Союзе, соль получают путем вымораживания морской воды. Рассольный лед, состоящий из почти чистой воды, отфильтровывается от остаточного рассола, на котором затем производится ряд последовательных операций по его вымораживанию, прежде чем концентрация остаточных его порций станет достаточно высокой, чтобы начать выпаривание досуха под действием искусственного нагрева (Armstrong, Miall, 1946).

Концентрированная рапа, оставшаяся после отделения хлорида натрия, подвергается дальнейшей специальной обработке с целью извлечения имеющихся в них соединений. Так, добавление в раствор хлорида кальция вызывает садку сульфата кальция (гипса), который затем поступает в продажу. При дальнейшем концентрировании рассола в осадок выпадают сульфаты магния, калия и другие соли. В заключительных стадиях процесса из остаточного раствора извлекается хлорид магния и бром.

Экстракция брома из морской воды

Бром можно рассматривать как почти морской элемент, поскольку в океане находится 99% всего содержания брома в земной коре (см. табл. 2). Бром был открыт в 1825 г. французским исследователем А. Ж. Балардом в концентрированных растворах, полученных после осаждения соли из воды соленых маршей близ Монпеллье. Позднее бром был обнаружен в составе калийных залежей Страсфурта и в рассолах из буровых скважин Мичигана, Огайо и Западной Виргинии. Из морской воды бром был впервые выделен в 1926 г. в Калифорнии при обработке маточных рассолов, получаемых в процессе извлечения соли в искусственных испарительных бассейнах. Потребление брома промышленностью было сравнительно ограниченным до начала производства высококомпрессионных двигателей внутреннего сгорания, так что спрос рынка удовлетворялся теми количествами, которые добывались из скважинных рассолов и соляных залежей. Но затем положение резко изменилось. В бензин с антидетонационными свойствами, содержащий присадку тетраэтилсвинца, стали добавлять этилендибромид, чтобы предотвратить отложение свинца на стенках цилиндров, клапанах, поршнях и на свечах. При столь возросших потребностях в броме рассолов, выкачиваемых из буровых скважин, оказалось недостаточно. Не удовлетворяла спрос и добыча брома как побочного продукта при производстве соли. Возникла острая необходимость в ином источнике брома.

В ходе широких поисков дополнительных источников брома "Этил корпорейшн" разработала процесс прямого осаждения брома непосредственно из морской воды, которая не подвергалась предварительному концентрированию. Согласно этой схеме бром осаждается в виде нерастворимого соединения - триброманилина - при обработке морской воды анилином и хлором. Во избежание гидролиза хлора морская вода предварительно подкисляется серной кислотой. Позднее этот процесс расширили до масштабов промышленного производства. Установка была смонтирована на судне, которое затем было переоборудовано в завод по извлечению брома. Работая 25 дней в месяц, такой плавучий завод производит около 75 тыс. фунтов брома. За этот же срок заводом потребляется реагентов: 250 т концентрированной серной кислоты, 25 т анилина, 66 т хлора, хранимых между верхней и нижней палубами. Эффективность извлечения брома из морской воды, где его содержится всего 0,1 фунта на 1 т, равна примерно 70%. На судне предусмотрены защитные меры, предпринимаемые для того, чтобы избежать разбавления морской воды отработанными водами, сливаемыми после завершения технологического процесса. Позднее было установлено, что для предотвращения смешения можно с успехом использовать вдольбереговые морские течения, существующие у многих побережий. В настоящий момент считают, что с технической точки зрения процесс извлечения брома на борту плавучего завода решен успешно, однако работа в открытом море с весьма коррозионно-активными реагентами гораздо сложнее, чем на суше.

Выбор места для постройки завода по извлечению брома следует производить с особой тщательностью. При этом необходимо заранее исключить возможности разбавления потребляемых заводом морских вод дождевыми осадками, сточными водами, а также водами, из которых бром уже извлечен. Кроме того, морская вода должна иметь высокую и постоянную соленость, относительно высокую температуру и не должна быть загрязнена органическими отбросами, на которые бесполезно расходуется хлор. Такое место, удовлетворяющее всем перечисленным требованиям, было найдено близ Кьюр-Бич (Северная Каролина). Здесь "Этил дау кемикл компани" построила завод производительностью 3 тыс. т брома в год. В 1938 г. мощность этого предприятия была увеличена до 20 тыс. т брома в год (Shigley, 1951).

Другой завод подобного типа построен близ Фрипорта, где условия для извлечения брома из морской воды в большей мере отвечают всем технологическим требованиям, чем около Кьюр-Бича. Проектная мощность этого завода 15 тыс. т брома в год. В 1943 г. там же был сооружен еще один завод равной мощности. Предприятие же близ Кьюр-Бича в конце второй мировой войны было закрыто. Таким образом, заводы Фрипорта производят в настоящее время около 80% потребляемых за год Соединенными Штатами количеств брома. На рис. 8 приводится схема технологического процесса извлечения брома "Этил дау кемикл компани".

На заводе Кьюр-Бича, согласно ранее разработанной технологии, смесь морской воды с кислотой и хлором заливалась в верхнюю часть кирпичной башни с встроенными внутри нее деревянными решетками. Растворенный в морской воде бром восстанавливался хлором до относительно летучего элементарного брома, а присутствующая в смеси кислота препятствовала гидролизу хлора. По мере того как смесь морской воды с бромом стекала из верхних частей башни, производилась продувка воздуха снизу вверх. Проходящий воздух выносил свободный бром из морской воды и переносил его в абсорбционную башню, заполненную кальцинированной содой, после чего уже не содержащая брома морская вода сливалась обратно в море. Насыщенный бромом раствор кальцинированной соды обрабатывался серной кислотой с целью перевода броматов и бромидов натрия в свободный бром. Затем смесь закачивалась в испарительную колонку, где производилась отгонка и вторичная конденсация брома в стеклянные или керамические сосуды. Дальнейшая очистка брома путем дистилляции позволяла получать в конечном итоге продукт с содержанием брома до 99,7%.

В 1937 г. этот процесс был несколько модифицирован. Так, при первичной отгонке брома в качестве переносящих агентов использовались сернистый ангидрид и воздух. В результате бром высвобождался в форме бромистоводородной кислоты, что позволяло существенно улучшить его последующую очистку. И хотя эффективность извлечения брома в обоих процессах превышает 90%, в настоящее время в США почти исключительно применяется процесс прямой экстракции брома из морской воды с использованием сернистого ангидрида (Shigley, 1951).

Извлечение магния из морской воды

Магний является самым легким из применяющихся в строительстве металлов. Его удельный вес 1,74, тогда как у алюминия он равен 2,70, а у железа - 7,87. Наиболее широкое применение этот металл, находит в строительстве транспортных средств. Кроме того магний используется как компонент сплавов с алюминием, в системах анодных и катодных защитных покрытий, в импульсных фотолампах и во многих других областях техники. К 1964 г. ежегодное мировое производство магния составляло около 150 тыс. т.

В морской воде содержится примерно 0,13% магния. И несмотря на то что такая концентрация составляет всего лишь 1/300 того количества, которое содержится в магниевой руде, добываемой на суше, для Соединенных Штатов главным источником этого металла является морская вода. Впервые магний был получен из морской воды в Англии (Armstrong, Miall, 1946), однако первое крупное предприятие по извлечению магния из морской воды было сооружено близ Фрипорта в начале 1941 г. "Этил дау кемикл компани". До этого времени магний в США получали из скважинных рассолов и из магнезитовых месторождений.

Выбор места для постройки завода близ Фрипорта был продиктован следующими весьма благоприятными обстоятельствами. Наличие дешевого природного газа позволяет эффективно его использовать для получения тепла и электроэнергии. Географическое местоположение завода дает возможность сливать сточные, отработанные воды обратно в Мексиканский залив, с крайне ничтожной возможностью разбавления ими потребляемых морских вод. Очень дешевую известь можно получать из известковых раковин, добываемых со дна Мексиканского залива, всего в нескольких милях от магниевого завода. На рис. 9 показана технологическая схема извлечения магния на заводе близ Фрипорта, а один из участков этого завода изображен на рис. 10.


Рис. 10. Общий вид магнийперерабатывающей установки на заводе "Этил дау кемикл компани", Фрипорт (Тexac). На переднем плане видны загустители Дорра, в которые смесь морская вода - известь перекачивается с целью ускорить выпадение в осадок хлористого магния.

Морская вода поступает на предприятие со скоростью около 1 млн. галлонов в час через подводные шлюзовые ворота канала, соединенного с Мексиканским заливом. Преимущество такой системы снабжения состоит в том, что нижние слои воды обладают значительно более высокой соленостью, чем поверхностные воды в районе завода. В искусственном бассейне вода непрерывно обрабатывается известковым молоком (выше упоминалось, что известь получают путем прокаливания устричных раковин). В результате реакции известкового молока с соединениями магния образуется жидкий илоподобный осадок нерастворимой гидроокиси магния, который затем перекачивается в отстойники. Осадок составляет примерно 2% общего объема морской воды, расходуемого в этом производстве, иными словами, уже на первой стадии технологического процесса осуществляется 100-кратное концентрирование полезного компонента. Отработанные воды спускаются в реку Брасос, впадающую в Мексиканский залив на значительном удалении от завода.

Отфильтрованную гидроокись магния растворяют в соляной кислоте. Полученный раствор хлорида магния концентрируют выпариванием, для того чтобы частично избавиться от захваченных из морской воды солей. Кальций осаждается в виде нерастворимого сульфата или гипса добавлением к раствору сульфата магния, после этого раствор снова фильтруют, чтобы отделить гипс и другие соли, и затем концентрируют выпариванием. Когда концентрация хлорида магния достигнет примерно 50%, а температура раствора поднимется приблизительно до 170°, его распыляют на предварительно высушенный твердый MgCl 2 . Растворитель мгновенно превращается в пар, а хлорид магния при этом осаждается. Высушенный твердый осадок затем помещают в электролитическую камеру, где он разлагается до металлического магния и газообразного хлора. Хлор преобразуется в соляную кислоту, которую успешно используют в последующих циклах процесса. Металлический магний отчерпывается из электролитической камеры и формируется в виде болванок. Содержание металла в них превышает 99,8% (Shigley, 1951).

Общая потребность США в сыром, первичном металлическом магнии уже со времени конца второй мировой войны удовлетворялась за счет производства его из морской воды. Во время войны правительство США построило ряд заводов, которые использовали в качестве сырья для производства магния магнезит, доломит, откачиваемые из скважин рассолы и морскую воду. Однако к концу войны ни один из этих заводов не мог выдержать конкуренции с предприятиями, извлекающими магний из морской воды, и это несмотря на то, что первым заводам правительство гарантировало полный сбыт продукции, тогда как предприятия, работавшие на морской воде, таких гарантий не имели.

Выбор участка для постройки магниевого завода определяется не столь жесткими требованиями, нежели завода, получающего бром из морской воды. Исключение, правда, составляет тот случай, когда извлечения брома и магния производятся совместно. Так, в процессе экстрагирования магния температура морской воды не имеет серьезного значения, менее важен и расход сырья: на производство 1 фунта элементарного магния расходуется всего лишь 5% тех количеств морской воды, которые используются при экстракции брома. Самыми важными факторами, диктующими целесообразность выбора места для завода, являются близость источников дешевой извести, топлива и электроэнергии. Эффективность процесса извлечения магния из морской воды составляет 85-90%. И хотя современные технологические возможности позволяют значительно полнее экстрагировать магний из морской воды, экономически это невыгодно, так как подсчитано, что увеличение коэффициента извлечения более 90% сопровождается резким возрастанием капитальных затрат на каждый процент прироста.

Одно из достоинств, присущих рассматриваемому процессу, состоит в том, что низкая стоимость сырья может быть еще более уменьшена, если эти материалы подавать непосредственно в технологическую линию путем их перекачки. Такая механизированная подача позволяет сделать производственный процесс в значительной мере непрерывным и установить приборы автоматического контроля. Кроме того, положительная особенность завода такого типа состоит в чрезвычайном единообразии потребляемого им сырья.

Магниевые соединения

Магний в форме MgO, Mg(OH) 2 и MgCl 2 находит широкое применение в самых различных областях промышленности. Его используют как огнеупорный материал для внутренних покрытий в плавильных печах, как сырье для фармацевтического производства, в изоляторах, при производстве удобрений, искусственного шелка и бумаги и многого другого. Многие компании мира получают соединения магния из морской воды; в частности это характерно для Англии и США. Впервые промышленное извлечение магниевых соединений из морской воды проводилось как побочный процесс из остаточных рассолов при получении поваренной соли (Seaton, 1931; Manning 1936, 1938).


Рис. 11. Последовательность процесса на магниевом заводе компании "Кайзер алуминум эид кемикл" близ Мосс-Лендинга (Калифорния).

Схема процесса извлечения магниевых соединений из морской воды изображена на рис. 11. Такую технологическую схему применяют на своих предприятиях компании "Кайзер алуминум энд кемикл корпорейшн" близ Мосс-Лендинга (Калифорния). Морская вода смешивается с прокаленным доломитом. Происходит осаждение гидроокиси магния, которая затем отстаивается в больших концентрационных емкостях. После отстаивания гидроокись магния извлекается, промывается для удаления растворимых примесей и фильтруется с целью уменьшить содержание воды примерно до 50%. Часть полученной таким образом гидроокиси магния поступает в продажу в виде гомогенизированного осадка на фильтре, оформленного как брикеты. Эта продукция используется при производстве бумаги и магнезиальной изоляции. Оставшаяся на фильтре часть осадка затем вновь прокаливается до образования различных сортов MgO, которые могут быть использованы при получении искусственного шелка, резины, изоляционных покрытий, огнеупорных кирпичей. На рис. 12 показан завод компании "Кайзер" по производству магниевых соединений.


Рис. 12. Завод по извлечению магния из морской воды компании "Кайзер алуминум энд кемикл" близ Мосс-Леидинга (Калифорния) (снимок с самолета).

В США около 90% всего объема каустической кальцинированной окиси магния и около 50% огнеупорной магнезии получают из морской воды либо из рассолов, выкачиваемых из скважин.

Золото из морской воды

На разработку методов извлечения золота из морской воды потрачено так много сил и средств, что в этом отношении с ним трудно сравнивать какой-либо другой элемент. По вопросам, связанным с экстракцией золота из морской воды, было выдано много патентов, касающихся как самих методов, так и оборудования (Bardt, 1927; Baudin, 1916; Bauer, 1912; Cernik, 1926; Bitter, 1938; Stoces, 1925). В 1866 г. один из членов Французской Академии наук обнаружил присутствие ничтожных количеств золота в морской воде. А позднее, в 1886 г., было сообщено, что содержание золота в водах Ла-Манша составляет до 65 мг на 1 т воды.

В начале этого столетия Сванте Аррениус указал, что прежние определения содержания золота в морской воде были преувеличены, по крайней мере, в 10 раз. Но, тем не менее, расчеты самого Аррениуса показали, что минимальное содержание золота в морской воде не ниже 6 мг на 1 т. По этим расчетам, в Мировом океане заключено примерно 8 млрд. т золота. Такого количества золота вполне достаточно, чтобы сделать каждого человека на земле миллионером. Но, несмотря на многочисленные патенты и проекты, до сих пор из морской воды не получено еще никаких практически ощутимых количеств этого металла.

В конце первой мировой войны блестящий немецкий химик, лауреат Нобелевской премии доктор Фриц Хабер утверждал, что военный долг Германии можно оплатить золотом, извлеченным из моря. Считая, что концентрация золота составляет 5-10 мг на 1 т морской воды, Хабер укомплектовал исследовательское судно соответствующим персоналом и оборудованием для изучения наиболее высоких содержаний золота в океанах. Однако к своему большому огорчению, Хабер установил, что концентрации золота редко превышают 0,001 мг на 1 т воды (Haber, 1927). Самое высокое содержание золота отмечается в Южной Атлантике и составляет 0,044 мг на 1 т. Даже в заливе Сан-Франциско, куда впадают реки, дренирующие золотоносные районы, концентрация золота не намного превосходит среднее содержание этого элемента в открытом океане. После 10 лет, посвященных работе над этой проблемой, Хабер пришел к заключению, что извлечение золота из морской воды невыгодно. В настоящее время установлено, что полученные Хабером значения содержаний золота в морской воде являются несколько неточными, поскольку он не учитывал, очевидно, присутствия золота в химикалиях и в реакционных сосудах, которыми он пользовался во время анализов.

Методы экстракции золота из морской воды основаны на использовании сульфидных частиц, которые обладают большим сродством к золоту. При прохождении морской воды над этими частицами золото, как полагают, прилипает к поверхности сульфидов. Кроме того, в качестве материала для извлечения золота из морской воды предлагалась также ртуть.

Несмотря на множество попыток экстрагировать золото из морской воды, известен всего лишь один случай, когда были получены сколь-либо ощутимые количества этого металла. В связи с широко развернутыми работами на заводе по извлечению брома в Северной Каролине "Этил дау кемикл компани" проводила исследование возможностей экстракции других металлов, включая золото. В результате переработки 15 т морской воды удалось извлечь 0,09 мг золота, стоимость которого составляет примерно 0,0001 долл. На сегодня это ничтожное количество составляет все то золото, которое было извлечено из морской воды (Terry, 1964).

Другие вещества, извлекаемые из морской воды

Помимо обычной соли, брома, магния и его соединений, из морской воды иногда извлекается ряд других веществ. Они, как правило, являются побочными продуктами при производстве соли либо их получают через промежуточное посредничество некоторых растений или рыб.

Впервые йод был обнаружен в золе водорослей в 1811 г. французом Бернаром Куртуа, владельцем фабрики по производству селитры. В поисках подходящего сырья для получения щелочи он решил использовать для этой цели водоросли. Очищая реакционные сосуды, в которых находилась горячая концентрированная серная кислота, он обратил внимание на выделения испарений фиолетового цвета, из золы водорослей. Пары конденсировались на стенках более охлажденной части сосуда в виде темных металлоподобных кристаллов (Armstrong, Miall, 1946). Содержание йода в некоторых водорослях, в частности в Laminaria, оказалось равным примерно 0,5% в пересчете на воздушно-сухую основу. Концентрация же йода в морской воде равна приблизительно 0,05 мг/л, или около 0,000005%. Таким образом, в указанных видах водорослей происходит 100000-кратное концентрирование йода в сравнении с его содержанием в морской воде.

Вскоре после открытия Куртуа было установлено значение йода для медицины. Началось интенсивное развитие промышленности, главным образом в Северной Англии, по извлечению йода из морских водорослей. В 1846 г. в Глазго функционировало более 12 фабрик, экстрагирующих йод из морских водорослей. Однако обнаружение йода в чилийских залежах нитратов привело к упадку добычи йода из морских водорослей.

Примерно в то же время из морских водорослей извлекались значительные количества калиевых и натриевых солей. Технология этого процесса, по существу, была не разработана. Обычно проводилось простое выщелачивание водорослей водой и последующее выпаривание полученного раствора. Другой весьма распространенный метод получения солей состоял в том, что водоросли сжигались, а зола выщелачивалась водой. В результате этих примитивных процессов йод получался в виде соединений - йодидов калия либо натрия, которые при смешивании их с серной кислотой и двуокисью марганца восстанавливались до элементарного йода.

В истории использования водорослей выделяются три различных периода: а) первый - когда водоросли применялись как сырье для получения щелочи, б) второй - когда их использовали для извлечения йода и в) третий - когда из водорослей добывали поташ. Однако каждый из периодов заканчивался созданием более совершенных методов получения этих продуктов из более дешевого сырья, добываемого на суше. В настоящее время водоросли используются как сырье для получения натриевого альгината - органического соединения, применяемого в качестве желатинообразующего и эмульсиообразующего агентов при производстве продуктов питания. Крупные предприятия, перерабатывающие морские водоросли в качестве сырья для производства рассматриваемых химических соединений, размещены на побережье Южной Калифорнии. Во многих частях света, особенно на Востоке, водоросли широко используются как продукты питания. В некоторых приморских странах их применяют в качестве удобрений.

Добыча минеральных соединений при опреснении морских вод

В последние годы уделяется особое внимание проблеме опреснения морских вод. Как правило, концентрация солей в сбросных водах в этом случае во много раз превышает содержание этих солей в исходной морской воде. В ходе работ по извлечению минеральных соединений из таких рассолов получены весьма обнадеживающие результаты. Это относится к снижению расходов по перекачиванию вод, поступающих на перерабатывающий завод с относительно высокой температурой рассола и примерно в 4 раза повышенной концентрацией.

Если процесс опреснения морской воды окажется рентабельным, то количество минеральных соединений, которые можно было бы извлекать из сбросных вод, во много раз превысит ожидаемые потребности. Допустим, например, что в ближайшие несколько десятков лет население прибрежных областей достигнет примерно 100 млн. человек, которые будут ежегодно расходовать для бытовых и промышленных целей в среднем по 100 тыс. галлонов воды на душу населения. Такой темп потребления в конечном итоге может достичь величины примерно 1013 галлонов, или 10 куб. миль, воды в год. При поступлении этого объема воды из океана и эффективности извлечения пресной воды 25% через перерабатывающие опреснительные заводы будут проходить 6,4 млрд. т хлорида натрия, 240 млн. т магния, 160 млн. т серы, 800 тыс. т бора, 2 тыс. т алюминия, 400 т марганца, 560 т меди, 560 т урана, 2 тыс. т молибдена, 40 т серебра и около 1 т золота. Будем считать, что экономически выгодно добывать лишь 10% этих количеств и что население, для которого проводилось опреснение морской воды, способно потреблять эти минеральные компоненты. Тогда, основываясь на статистических данных, помещенных в табл. 3, можно сделать вывод, что темпы извлечения молибдена, бора и брома будут соответствовать их потреблению, в то время как производство других минеральных соединений будет значительно превышать потребность в этих веществах. Разумеется, нет никакой необходимости в извлечении всех солей. Целесообразно получать лишь те соли, которые пользуются сбытом. Во всяком случае, в связи с техническими трудностями маловероятно, чтобы в настоящее время проводилось промышленное извлечение какого-либо элемента, концентрация которого в морской воде ниже, чем бора. Заслуживают внимания, однако, следующие соображения. Если удалось бы извлечь из морской воды уран и торий, то использование этих элементов в реакторах бридерного типа дало бы тепловую энергию, необходимую для работы конверсионных заводов по производству пресной воды.

Таблица 3. Количества минеральных компонентов (в т), которые можно было бы извлечь из сбросных рассолов конверсионных заводов с производительностью 10 13 галлонов пресной воды в год
Элемент Годовая
продукция, т
Производство на душу
населения при общей
его численности 10 8
человек, т/год
Современное
потребление
в США на душу
населения,
т/год
Отношение
производства
к потреблению
NaCl 64*10 8 64 0,145 440
Магний 2,4*10 8 2,4 25*10 -4 10000
Сера 1,6*10 8 1,6 0,033 50
Калий 68*10 6 0,68 0,010 68
Бром 1,2*10 6 0,012 4,7*10 -4 25
Бор 0,8*10 6 0,008 5,5*10 -4 15
Алюминий 2000 2*10 -5 0,013 0,001
Марганец 400 4*10 -6 0,0033 0,001
Медь 560 7*10 -6 0,0067 0,001
Уран 560 5*10 -6 1,4*10 -4 0,04
Молибден 2000 2*10 -5 8,3*10 -5 24
Серебро 40 6*10 -7 3,0*10 -5 0,02
Никель 400 4*10 -6 0,001 0,004
Золото 1 2*10 -9 5,0*10 -6 0,0004

В настоящее время сконструированы крупные ядерные реакторы, которые могли бы обеспечить тепловой и электрической энергией конверсионные опреснительные установки (Hammond, 1962) Подсчитано, что стоимость производства пресной воды составляет примерно 0,15 долл. за 1000 галлонов, что успешно выдерживает сравнение со стоимостью воды, потребляемой в городском хозяйстве или для ирригационных целей в некоторых районах. Крупный завод с реакторной установкой может производить ежедневно около 109 галлонов пресной воды; этого количества должно хватить для удовлетворения бытовых и хозяйственных нужд города с 4-миллионным населением либо для орошения посевов площадью 500 кв. миль. Трудно ожидать, однако, чтобы такие заводы стали в ближайшие несколько десятков лет серьезными источниками снабжения пресной водой. Недостаточно аргументированным является также и предположение о будущем потреблении минеральных компонентов морской воды и о характере изменения цен и других расходов. Иными словами, статистические выкладки, помещенные в табл. 3, представляют лишь теоретическую ценность.

Уран, золото, литий - в соленой воде растворены миллиарды тонн ценного сырья. Раньше процесс извлечения полезных веществ из воды был необычайно трудоёмким. Теперь исследователи собираются, наконец, извлечь этот клад из морских пучин.

16 05 2016
14:18

В океанах хранятся приблизительно четыре миллиарда тонн урана и десятки тысяч килограммов золота

Море это золотой рудник. Во всяком случае, если вы знаете, где нужно искать. Обычно один литр морской воды содержит всего несколько миллиардных долей грамма золота. Но недавно исследователи из Германии и Исландии обнаружили кипящий золотоносный источник: на исландском полуострове Рейкьянес. Там, концентрация золота в полмиллиона раз выше, чем в обычной морской воде.

Не только этот драгоценный металл, но и другие ценные вещества в огромных количествах растворены в морской воде. В море покоятся коло четырех миллиардов тонн урана. Этого достаточно, чтобы удовлетворять энергетические потребности человечества в течение 10000 лет. Или, например, литий: Этот редкоземельный химический элемент используется для батарей в планшетах или смартфонах. Все больше и больше стран инвестируют в изучение того, как можно использовать океаны в качестве нового источника ресурсов. Но нужно понимать, что вылавливание сырья из воды задачка далеко не тривиальная.

В Германии Центр океанических исследований имени Гельмгольца (Geomar) в Киле участвовал в открытии месторождений золота в горячих источниках в Исландии. "Измеренные концентрации достаточно точно указывают на значительные месторождения золота", − говорит Марк Ханнингтон, руководитель рабочей группы по разведке морских ресурсов Geomar.

Команда считает, что геотермальные резервуары полуострова Рейкьянес содержат, по меньшей мере, 10000 кг золота. Исследователи предполагают, что растворённое в морской воде и циркулирующее в подземных скальных расщелинах золото должно было накапливаться в течение длительных периодов, прежде чем оно покинуло подземный резервуар, а затем в очень высокой концентрации вылилось через скважины.

Золотые микробы

"Это золото может появляться в жидкостях в виде тонкодисперсных наночастиц золота", − предполагает Дитер Гарбе-Шенберг из Университета Киля. Так называемое нано золото пользуется спросом во многих областях техники. Его особые поверхностные свойства могут, например, обеспечить более эффективное управление химическими реакциями в катализаторах.

Но как можно извлечь из воды настолько мелко измельчённое золото, да ещё, чтобы этот процесс был незатратным, простым и экологически чистым? Молодых исследователей из Гейдельбергского университета и из немецкого научно-исследовательского Центра по изучению рака посетила гениальная идея. Для того чтобы заставить золото из раствора выпасть в осадок, они используют свойства специально адаптированных бактерий.

Delftia acidovorans, так называется микроб, который растет только на золотых рудниках. Этот микроорганизм адаптировался к окружающей среде, он отделяет драгоценный металл даже из растворов с относительно низкой концентрацией золота. Исследователи идентифицировали необходимые гены и встроили их в микроб Е. coli, который распространен по всему миру.

Это позволило им повторно извлечь драгоценный металл из золотоносных растворов, которые получаются, например, при извлечении золота из электронного лома. Исследователи подали заявку на патент этих биотехнологических процессов, так как они уже продемонстрировали высокую конкурентоспособность по сравнению с классической химической переработкой золота. Это открытие также может сотворить революцию в сфере добычи золота из моря.

Миллиарды тонн урана

Соединенные Штаты, тем временем, оказывают содействие крупной научно-исследовательской программе по добыче урана из океанов. Огромные растворенные в воде запасы происходят из природных минералов, которые были вымыты в море в ходе выветривания и других эрозивных процессов. Тем не менее: уран нелегко выловить из воды. Ещё в 80-х годах японские ученые экспериментировали с материалами, которые целенаправленно захватывают и связывают уран из морской воды.

Американцы пытаются сделать этот метод более эффективным. Исследовательский консорциум хочет в буквальном смысле вылавливать уран удочкой. В журнале "Industrial and Chemical Engineering Research" впервые на рассмотрение публики были представлены материалы и описание самого метода. Этот метод, вероятно, сможет уменьшить в три-четыре раза себестоимость добычи урана из моря, и при этом увеличить объёмы добываемого сырья.

"Для того, чтобы обеспечить будущее ядерной энергетики, нам нужно найти экономически жизнеспособный и надежный источник добычи топлива", − объясняет Филипп Бритт, директор программы в Департаменте энергетики США. Метод главным образом разрабатывается на основе двух государственных научно-исследовательских институтов, Национальной лаборатории Ок-Ридж (Oak Ridge) в штате Теннесси и Национальной лаборатории Пасифик Норсвест (Pacific Northwest) в Ричланде.

В качестве "удочек (улавливателей) для урана" служат длинные нити (шнуры) полиэтиленовых волокон. Тонкие, но стабильные волокна специально обрабатывают так, что в процессе часть их молекул преобразуются в амидоксим. Это органическое соединение, состоящее из углерода и азота, является "приманкой" для растворенного в воде урана, так как он предпочтительно создает соединения именно с этим веществом.

Воздействие на окружающую среду

Для того чтобы "поймать" уран, шнуры нужно просто поместить в море, предпочтительно в ту область водных масс, где есть течение и происходит перемешивание. Через несколько недель, ураноносные шнуры можно извлекать. Их помещают в кислотную ванну, где уран высвобождается в виде уранила. Соединение может быть легко извлечено из раствора, а затем его можно без труда обогатить и переработать в уран. Урановая "удочка" без проблем переносит эту процедуру и, по мнению исследователей, может быть повторно использована непосредственно снова в океане.

Сколько урана можно добыть из моря ​​таким способом, уже продемонстрировали тесты в трех различных местах на Западном побережье США, во Флориде и на побережье штата Массачусетс. После 49 дней пребывания в морской воде, шнуры выловили и связали около шести граммов урана на килограмм абсорбирующего материала. Японские исследователи в свое время смогли добиться результата в два грамма урана на килограмм абсорбирующего материала. И при этом пластиковые шнуры японцев должны были оставаться в воде на протяжении 60 дней.

"Решающее значение имеет понимание того, как абсорбирующий материал работает в естественных условиях в морской воде", − говорит Гари Гилл, заместитель директора Национальной лаборатории Pacific Northwest. Потому что в дополнение к максимально возможным показателям добычи урана должно быть гарантировано, что этот метод не оказывает отрицательного воздействия на окружающую среду. "Но мы уже выяснили, что большинство из этих абсорбирующих материалов не токсичны", − говорит Гилл.

Команда уже пять лет работает над усовершенствованием метода. Всё началось с моделирования на компьютере. Программа проверяла, какие из химических групп выборочно улавливают и связывают именно уран. Затем последовали термодинамические и кинетические исследования, которые определили, как быстро уран из воды связывается с тем или иным абсорбирующим веществом и где находится равновесие этой реакции. Весь процесс функционирует только тогда, когда связывается больше урана, чем растворяется.

Литий для батарей

К проекту также были привлечены Китайская академия наук и Японское агентство по атомной энергии (ЯААЭ). В Институте синтеза Роккасё (Rokkasho Fusion Institute), который является частью Японского агентства по атомной энергии, японские исследователи продолжают изучение технических способов добычи стратегически важного сырья из морской воды.

К таким веществам относится литий, металл, который входит в число редкоземельных химических элементов. Он необходим в первую очередь для изготовления компактных литий-ионных батарей, которые сейчас распространены в планшетах, цифровых камерах и мобильных телефонах, а также используются для эффективного хранения энергии в электрических автомобилях.

В то время как известные, доступные месторождения лития в мире оцениваются примерно в 50 млн тонн, ученые подозревают, что в водных ресурсах океанов могут быть растворены 230 миллиардов тонн лития. Тем не менее, сырье встречается только в качестве микроэлемента. Около 150 000 литров морской воды едва ли содержат хотя бы 30 граммов лития.

Но Цуёши Хосино из Института синтеза Роккасё это совершенно не смущает. Ученый только что представил общественности метод, с помощью которого требуемый металл может быть отфильтрован из воды, даже если он присутствует там в очень небольших количествах. Этот метод не требует дополнительного использования энергии, ведь её приносят сами электрически заряженные частицы лития.

В фильтре, состоящем из тонкой мембраны из стеклокерамики, которая обладает литиевой ионной проводимостью, заряженные частицы двигаются от отрицательной стороны к положительной стороне, таким образом, производя электрическое напряжение. "Микропористая керамика пропускает через себя только растворённые в морской воде электрически заряженные частицы лития", − объясняет исследователь. В 72-часовом испытании фильтр достиг доли восстановления, которая составляет около семи процентов.

Исследователи знают, что это только начало. Эксперты из Центра энергетических исследований Великобритании предполагают, что в 2030 году такими методами можно будет получать сырье из моря в коммерческих объёмах, при условии, что цены на золото, уран или литий останутся достаточно высокими.

Сильвия фон дер Вайден.

Добыча золота началась еще в древние времена. За всю историю человечества было добыто примерно 168,9 тыс. тонн благородного металла, почти 50% которого уходит на разнообразные ювелирные изделия. Если все добытое золото собрать в одном месте, то образовался бы куб высотой с 5-этажный дом, имеющий ребро - 20 метров.

«Золотая история»

Золото - металл, с которым человечество познакомилось как минимум 6500 лет назад. Самым древним считается клад, найденный в Варненском некрополе, который находится в Болгарии, и датированы изделия 4600 годом до н.э.

Золото играло важную роль на протяжении всей истории человечества, оно до сих пор считается надежным капиталовложением. Приходили и уходили валюты, но оно остается универсальным и стабильным эталоном уже тысячи лет.

Владеть этим металлом всегда было престижно. Количеством золота оценивалось не только благосостояние, от него зависело и положение в обществе. Так происходит и по нынешнее время.

Именно золото часто было причиной войн и преступлений, но одновременно оно сыграло огромную роль в прогрессе человечества в общем. На его основе начала складываться кредитно-денежная система, создавались культурные ценности и архитектурные шедевры, которые бесценны и до сих пор всех поражают. Благодаря стремлению произвести этот металл учеными были получены многие химические элементы, а золотые лихорадки помогали открывать и осваивать новые земли.

Как добывают золото в России

В верхней коре земного пласта золото содержится в маленьких количествах, но таких месторождений и участков довольно много. Россия находится на 4 месте в рейтинге по его добыче и имеет 7% от мировой доли.

Промышленным способом золото начали добывать в 1745 году. Первый рудник был открыт крестьянином Ерофеем Марковым, который сообщил о его местонахождении. Впоследствии его стали называть Березовским.

На сегодняшний день в России существуют 16 компаний, которые добывают этот драгоценный металл. Лидером является компания «Полюс Золото», которая имеет 1/5 часть от доли всего рынка добычи. Старательные артели в основном добывают металл в Магаданской, Иркутской и Амурской областях, на Чукотке, Красноярском и Хабаровском краях.

Добыча золота - процесс сложный, трудоемкий и дорогостоящий. Сокращают такие затраты методом закрытия малодоходных и нерентабельных рудников. Уменьшение объема и внедрение новых технологий, сберегающих капитал, - вполне эффективные меры.

Процесс добывания золота

Пока проходили века, процесс добычи этого металла постоянно менялся. Изначально была популярна добыча золота вручную. Старатели получали золотой песок благодаря нехитрым примитивным приспособлениям. В лоток набирали речной песок, а затем встряхивали его в потоке воды, песок смывало, а крупинки металла оставались на дне, так как они более тяжелые. Этим способом пользуются часто и в нынешнее время.

Однако и это не единственный процесс добычи. Например, раньше вдоль рек можно было частенько найти золотые самородки. Их выбрасывало на сушу при размытии золотоносных жил естественным путем. Однако уже к ХХ веку богатых россыпей не осталось, и золото научились добывать из руды.

Сейчас добыча золота вручную практикуется редко, процесс полностью механизирован, но в то же время он очень сложный. Рентабельным считается месторождение, в котором на одну тонну приходится 3 г золота. При содержании в нем 10 г оно считается богатым.

Еще несколько лет назад часто применялся такой способ, как амальгамирование, который основан на особом свойстве ртути обволакивать золото. На дно бочки помещали ртуть, затем в ней встряхивали золотоносную породу. В результате даже самые мелкие частицы золота просто прилипали к ней. После этого ртуть отделяли от пустой породы, и при сильном нагревании золото отслаивалось. Однако этот способ имеет и недостатки, так как ртуть сама по себе очень токсична. При этом золото она отдает все же не полностью, так как уж совсем крохотные частицы драгоценного металла плохо смачиваются.

Второй способ более современный - золото выщелачивают цианидом натрия, который способен даже самые мелкие частицы перевести в цианистые водорастворимые соединения. А уже из них потом при помощи реактивов и извлекается золото. Этим способом можно получать драгоценный металл даже из уже что делает их снова рентабельными.

Получение золота дома

Добыча золота вручную возможна и в домашних условиях. Для того чтобы добывать его, не нужно ехать на прииски и часами трясти лотками. Есть более спокойные и цивилизованные методы. Вокруг очень много предметов, которые содержат золото. К примеру, старые советские часы в своих желтых корпусах содержали настоящий чистейший драгметалл без примесей.

Для того чтобы его оттуда достать, необходимо просто скупать такие часы в очень больших количествах. Затем понадобятся пластмассовые ведро и тазик, электроплитка, лезвия для бритвы, стеклянная термостойкая кастрюля, кисточка и х/б ткань для фильтрования, резиновые перчатки и влагораспылитель. Из химикатов нужны азотная и соляная кислоты.

Переработка начинается, когда у вас на руках уже есть 300 корпусов. Процесс займет всего 4 часа, при этом вы израсходуете 4 литра кислоты. Из такого количества корпусов можно получить 75 грамм чистого золота.

Кто бы мог подумать, но все, даже дети, ежедневно носят в карманах и сумках золото. Все просто - каждая сим-карта для мобильного телефона содержит некоторое количество драгметалла. Его можно извлечь и оттуда. Делается это двумя способами: электролизом или вытравливанием. Для последнего необходим химический реактив «царская водка».

Самым простым методом считается именно вытравливание, при котором золото получают благодаря химической инертности драгметалла, а именно - его способности вступать в реакции с другими элементами. Для вытравливания потребуется окислитель «царская водка», который делается из концентрированных кислот: соляной и азотной. Жидкость имеет оранжево-желтый цвет.

Золото из воды

Добыча золота возможна и из воды. Оно содержится и в ней, причем в любой: канализационной, морской, водопроводной, но в очень небольших количествах. Например, в морской оно существует в пропорции 4 мг на тонну. Несмотря на это, добывать его все же можно при помощи негашеной извести, которой потребуется всего тонна на 4,5 тыс. тонн воды.

Для того чтобы получить из морской воды золото, потребуется смешать ее с известковым молоком. Через некоторое время жидкость нужно выпустить обратно в море, а уже из осадка извлекать драгметалл. Кировские инженеры предлагают еще один безотходный способ, при котором известь заменяется золой тепловых электростанций. Этот метод считается наименее затратным из всех известных.

Золотые бактерии

В Канаде ученые вообще обнаружили бактерии, которые способны выделять золото из различных растворов. Удивительно, не так ли? Например, бактерия Delftia acidovorans имеет вещество, которое как раз и выделяет драгметалл из раствора. И причина проста - она просто защищается, охраняя себя от ионов золота, которые для нее токсичны. Вторая бактерия Cupriavidus metallidurans, наоборот, накапливает его внутри себя.

Обе были найдены в 2006 году в «золотых» шахтах. Исследования канадцев показали, что бактериям, накапливаемым золото, удается избежать отравления за счет генной природы.

Драги

Добыча золота производится и при помощи драгов. Ими называют плавающие горнодобывающие машины, которые имеют землечерпательное, обогатительное или другое оборудование, обеспечивающее комплексную механизацию процесса добычи. Они обогащают полезные ископаемые и удаляют

Предназначение драгов - разрабатывать обводненные месторождения полезных ископаемых и извлекать ценные компоненты (золото, платину, олово и т.д.) Применяют их в основном на аллювиальных, делювиальных, глубинно- и прибрежно-морских осадочных и россыпных месторождениях. Исключение составляют лишь валунистые, крепкие горные породы и вязкие глины.

Виды драгов

Драги делят на два класса.

  1. Морские, при помощи которых разрабатываются месторождения прибрежной зоны и глубинные рудники в озерах, океанах. Они монтируются на килевых буксируемых или самоходных судах, которые обеспечивают эксплуатацию при шторме.
  2. Континентальные, которые используют для разработки месторождений на материках. Монтируются на плоскодонном судне.

Драги классифицируют по:

  • виду энергии, которую используют приводные механизмы;
  • глубинным выемкам пород в разрезе ниже уровня воды;
  • роду аппарата (много черпаков с прерывистой цепью, со сплошной цепью, роторным комплексом, ковшом драглайна, грейферным ковшом);
  • вместимости черпака (крупно-, средне- и малолитражные);
  • способу маневрирования (канатно-якорные и канатно-свайные).

На территории РФ сейчас используют драги для добычи золота, в основном это происходит в Дальневосточном федеральном округе. Однако добыча таким методом может негативно сказаться на экосистеме, разрушить ландшафты рек, сильно загрязнить территорию, которая расположена вниз по течению.

Поэтому такой метод может использоваться лишь при тщательном соблюдении проектов разработки. Для их осуществления потребуется рекультивация земель, которые были нарушены горными работами, а также восстановление лесных массивов, почвы и растительности речных долин.

Как сделать драгу для добычи золота самостоятельно

Многие старатели, добывающие золото, хотели бы иметь собственную драгу, при этом значительно сэкономив на расходах, так как цены на это оборудование очень высоки. В таком случае проще всего сделать ее своими руками. Несмотря на то что материалы будут закупаться самые недорогие, все равно на создание драги потребуется некая сумма.

Изначально нужно составить списки и схемы сборки, для этого можно взять как пример самые известные драги для добычи золота на данный момент. В принципе, первый этап - изучение, чем больше вы о них будете знать, тем качественнее и лучше сделаете собственную.

Некоторые важные детали можно найти на обыкновенной свалке, причем приобрести их за бесценок, например, двигатель для аппарата. Далее нужно определиться с размером драги, чем она больше - тем большее количество грунта можно обработать, но ее вес и стоимость тоже будут выше, чем у небольшого собранного изделия.

Строить ее нужно с диаметром шланга до 12 см, чтобы можно было управиться с драгой самостоятельно. Самый оптимальный размер - это 10 см. Если нужен сжатый воздух, то необходимо приобрести воздушный компрессор, оборудование для дайвинга и воздухоприемный бак. Однако это не первая необходимость, сделать это можно уже потом.

Для того чтобы построить вожделенный аппарат, потребуются: двигатель с насосом, разнообразные инструменты (ножовка, молоток, гаечные ключи, отвертки). Не помешает приобрести сварочный аппарат. Покупать можно детали и б/у, но некоторые, особо важные и проблемно- или труднозаменимые, лучше все-таки приобрести новые в магазине.

Некоторые детали драги часто невозможно сделать собственными руками, поэтому их придется все же приобрести: двигатель, водяной насос, воздушный компрессор, шланг, рудопромывочный желоб. Именно последний является самой главной деталью, без него золото просто не захватывается, соответственно, весь построенный аппарат теряет смысл.

Раструб драги следует установить в голове шлюза для того, чтобы он направлял в него потоки воды и грунта. Всасывающий клапан забирает воду в помпу (это тоже одна из важных деталей). Если будет всасываться песок, то насос может быстро сломаться, поэтому драгировать без клапана нельзя.

Гидроэлеватор размещается на конце шланга, при этом вода подается к началу и создается разряжение. Здесь лучше всего использовать всасывающее сопло. Управлять на больших драгах элеватором трудновато, поэтому применение в основном идет на небольших машинах, если работа проходит на мелководье.

Плавучесть аппарата - отдельный этап создания драги. Обеспечить ее можно несколькими способами. Изначально использовали шины от грузовых автомобилей, весят они немного и стоят дешево. Единственное препятствие заключается в том, что достать их не так просто, как может показаться. Однако это был бы оптимальный вариант.

Сейчас многие производители драг используют Они довольно надежные, но и тяжелые. Тем не менее, и здесь есть множество вариантов. Некоторые драги, которые собираются в домашних условиях, имеют различные пластиковые понтоны. Один из интересных способов - когда используют пластиковые контейнеры или же бочки, емкость которых до 40 литров. Приобрести их можно совсем недорого. Если вам не жалко потратить большую сумму, но купить готовое, то тогда легче приобрести у производителя.

Еще одной важнейшей деталью, влияющей на плавучесть, считается рама. Именно на нее крепят мотор и рудопромывочный желоб. Если делать ее самостоятельно, то можно взять простые куски алюминия, которые легко отыскать на любой свалке. Обойдется это недорого, усилий почти не потребуется. Если рама получится плоской, то к ней просто крепятся шины от грузовика.

Проверить работу драги можно уже после полной ее сборки. Для этого берется две дюжины небольших кусков свинца, которые выравниваются и красятся в яркий цвет. В водоеме набирается грунт, и они помещаются туда. Вот как раз на нем и можно опробовать драгу. Посмотрите, сколько кусочков свинца вернулось после промывки породы. При нормальной работе драги потери возможны лишь до 2 кусков. Если свинца не хватает, то следует еще раз проверить всю сборку по схеме, и если потребуется, провести дополнительные улучшения.

Планы добычи золота в дальнейшем

Все меньше становится золотых месторождений, их открывают сейчас в основном в ЮАР, другие значительно истощаются, а залежи с пониженным и средним содержанием драгметалла разрабатывать просто невыгодно.

По прогнозам специалистов, запасы полезных ископаемых, которые содержат золото, можно будет разрабатывать еще лет 50. Потом они закончатся. Просто потому, что человечество в последние десятилетия очень интенсивно добывает золото. И становится его в природе все меньше и меньше. Теперь нам предстоит за ближайшие годы найти новые возможности добычи этого металла. Самым перспективным методом считают технологию выщелачивания золота.

В последние годы много говорят об освоении океана как еще об одном способе добычи золота. Морских россыпей, залежей очень много, а вот дно еще полностью не изучено. Возможно, что именно в океане скрыта большая часть месторождений драгоценного металла. Нашим потомкам предстоит это выяснить.

Золото в воде это - не миф, а реальность, которая не требует подтверждения. Ионы 79 элемента таблицы Д. И. Менделеева присутствуют в организме человека, они входят в состав растений и, конечно, воды. Привычная жидкость богата благородным металлом, она переносит золото, несет его частицы по дну реки, формируя залежи. Это качество воды и интересует старателей всего мира, которые с энтузиазмом исследуют реки и ручьи.

Поиск золота в воде

Где и как искать Au?

Золото из воды добывают и зимой и летом. Этот элемент можно отыскать, используя несколько способов, и холодная погода не остановит опытного старателя. Для начала стоит изучить алгоритм действий, который поможет добыть драгметалл из воды.

Итак, что делать тем, кто хочет найти Au:

  • Изучить местность, выбрать место, немного пообщаться с местными жителями. Дополнительная информация никогда не будет лишней, по этой причине стоит тщательно изучить местность, просмотреть карты и собрать как можно больше сведений. Беседа с местными жителями поможет установить, где находили Au, как давно это было.
  • Содержание золота в воде может приятно удивить и даже обрадовать, но чтобы найти его, не стоит нырять с аквалангом под воду. Можно просто обследовать скалы, изучить большие камни, взять пробу воды.
  • С помощью лотка нужно взять пробу песка или обследовать берег реки, ручья на наличие гальки из кварца. Кварц - это основной спутник золота, но можно искать не только его, «сопровождать» Au могут пирит и серебро.

Как получить золото и какие приборы можно использовать при добыче драгметалла:

  • Вода содержит песчинки Au, но они не плывут по течению, а ползут по дну. С годами песчинки прессуются и могут превращаться в самородки и даже залежи. Обнаружить на дне металл поможет мини-драга. Это приспособление, которое работает как пылесос. Мини-драга всасывает в себя песок и помогает обнаружить Au. Машина сама фильтрует, промывает и отделяет золото от примесей и грязи.
  • Металлодетектор - еще одно приспособление, которое помогает обнаружить благородный металл в реке или ручье. Прибор погружают в воду, он может отреагировать на золото и обнаружить месторождение на небольшой глубине. Еще с помощью металлодетектора исследуют прибрежную зону.
  • Наши предки использовали при промывке Au лоток. Первоначально приспособления изготавливали из шкур баранов, позже технология изменилась. Современные лотки используют для работы на горных реках, ручьях с быстрым течением. Но прогресс не стоит на месте и, несмотря на то что современные лотки легче и удобнее, их используют в основном для взятия проб воды.

Наличие приборов поможет ускорить поиск и увеличит шансы на успех. Но это вовсе не значит, что дорогостоящее оборудование - это 100 % гарантия обнаружения самородка в земле или воде.

Золото в песке

Получение Au из прибрежного песка начинается с того, что его берут на пробу: просто промывают в лотке, изучая, есть ли крупицы желтого металла.

Можно побольше накопать песка, погрузить его в мешочки и налить в них воды. Дело в том, что песок значительно легче золота. Благородный металл тут же осядет на дно и его можно будет увидеть, а вот песчинки продолжат плавать в мешочке.

Схема возможного расположения золота в водоеме

Следует отфильтровать воду с песком, если под рукой нет ничего, что можно использовать в качестве фильтра, то жидкость просто сливают. Она уйдет вместе с песком, а на дне мешочка останется Au.

Драгметалл добывают из песка исключительно летом, зимой старатели просто обыскивают прибрежную зону, исследуют камни, но песок не промывают.

Чаще всего песок просто берут на пробу, его поднимают со дна реки или копают возле берега. Проба помогает определить, есть ли в выбранном месте Au и как много его в этом месте. Если удается обнаружить не одну-две песчинки золота, то можно продолжать поиски. Если же количество желтого металла ничтожно мало, искатели отправляются на другое место.

На какой глубине можно найти самородок?

  1. Золото весом не более одного грамма чаще всего находится под слоем песка в 10–13 см, достать его не так сложно.
  2. Если поднять грунт на 15–30 см, есть шанс обнаружить самородок весом более 1,5 грамма.
  3. Если докопаться до грунта, который идет сразу после песка, то можно найти целый кусок благородного металла весом более 100 грамм.

Впрочем, добыча Au связана с определенными трудностями и нет никаких гарантий, что «раскопки» закончатся успехом. По этой причине и рекомендуют перед началом поиска изучить местность и взять пробы грунта, песка и воды.

Поиск золота в морской воде

Добыча благородного металла из морской воды имеет определенные сложности. Говорят, что если извлечь все золото из морей и океанов, то его вес окажется весьма приличным. Но сегодня нет ни одного эффективного способа, который поможет извлечь Au из вод океанов и морей. Но есть надежда, что в скором времени ученым все же удастся преуспеть в этом деле.

Золото из морской воды помогут добыть бактерии. Не так давно было установлено, что микроорганизмы способны обнаружить частицы металла, даже если на триллион кубометров воды приходится несколько крупиц Au.

Бактерии осаждают ионы металла и скрепляют их между собой, на это микроорганизмам требуется некоторое количество времени.

Поскольку такой способ добычи находится еще в процессе исследования, несмотря на всю перспективность, его сложно назвать действенным.

В принципе специалисты многих стран на протяжении долгого времени ломают голову над тем, как извлечь Au из морской воды. Существует несколько способов, но все они считаются слишком затратными и по этой причине их не используют в золотодобывающей промышленности.

Прибыль и перспектива

В независимости от того, где идет добыча Au, в воде или на суше, золотодобывающая отрасль сегодня оценивается как перспективная.

Размеры добычи постоянно растут, геологи занимаются поиском новых месторождений, а технологический прогресс не стоит на месте. Изобретение различного рода аппаратуры помогает вновь начать разработку месторождений, которые ранее были заброшены и считались неперспективными.

Драгоценный металл скрыт от глаз человека в толщах породы, большое его количество находится глубоко в недрах земли. Золото выходит на поверхность лишь в местах вулканической активности. По этой причине человечество на протяжении многих лет думает не только о том, как добыть его из недр земли, но и как извлечь драгметалл из морской воды.

При этом с годами любовь людей к металлу желтого цвета не ослабевает. Золото манит и завораживает, но не только внешняя красота привлекает старателей и банкиров.

Драгоценный металл - это выгодное вложение денег. Котировки постоянно растут, а в условиях экономического кризиса стабильность золота привлекает многих.

Несомненно, отрасль развивается, а добыча Au становится выгодным делом. Металл ищут не только работники крупных компаний, но и путешественники, старатели и просто обычные люди, которые хотят решить финансовые проблемы или немного развлечься.

Но не стоит забывать о том, что поиск металла на профессиональном уровне требует материальных вложений. Необходимо приобрести оборудование, получить доступ к информации и найти время для того, чтобы посвятить его обнаружению золотых приисков. В среднем на поиск и разработку месторождения уходит не менее года.

Учеными многих стран исследовались генезис и топография распространения золота в морской воде, изыскивались методы его извлечения.

Золото было обнаружено в толще различных видов морских водорослей и в морских отложениях (на глубине 89-198,6 м), в прибрежных водах, в гейзерах штата Арканзас (США) и в морской воде. Содержание золота по различным определениям колебалось от 3 до 200 мг/т. Там же обнаружено и серебро.

Содержание золота в морской воде и методы его извлечения

По данным геохимиков, в одном литре морской воды содержится - 0,000004 миллиграмма растворенного золота, в одном кубическом километре - 0,004 тонны, во всем объеме Мирового океана более 6 миллионов тонн.

Извлечение золота можно производить фильтрованием морской воды через адсорбенты (угольную мелочь, соединения целлюлозы, пирит, сульфидные руды, пропитанную реагентами ветошь) с последующим их сжиганием или растворением.

  • осаждение химическими методами;
  • электролиз;
  • сорбция ионообменными смолами;
  • помещенными в специальный контейнер;
  • ионная флотация посредством специальных сетей;
  • пропитанных реагентами.

Попутное извлечение золота из морских россыпей

Практический интерес представляет попутное извлечение золота из титано-циркониевых прибрежных морских россыпей. Ценность и экономическая значимость прибрежных россыпей определяются не только крупными запасами рудных минералов, но и возможностью комплексного использования сырья.

При исследовании семи проб песков титаномагнетитовых морских россыпей Приморья установлено повышенное содержание золота. Кроме основных компонентов (ильменита, магнетита, рутила и циркона) могут извлекаться гранат, ставролит, кианит, дистен, силлиманит и др. Содержание ильменита по различным месторождениям колеблется от 0,6 до 19%, титаномагнетита от 1 до 28%.

Основная масса золота (95%) сосредоточена в классе -0,3 + + 0,1 мм. Связанное золото не обнаружено. Золото в основном тонкопластинчатое, чешуйчатое, в плане изометричное, овальное, удлиненное, реже - неправильных очертаний, совершенно окатанное, сильно истертое, глубоко измененное процессами коррозии. Лабораторными опытами установлено, что золото можно извлекать отсадочными машинами, хотя масса одной золотинки (чешуйки) из морской россыпи в пять раз меньше массы золотины той же крупности из речной россыпи. Извлечение золота отсадкой составляло из речной россыпи 84% и из морской - 67%. При перечистке хвостов извлечение золота повышается до 88%.


При исследовании песков одного из титано-циркониевых месторождений морского происхождения центрального района России установлено, что свободного золота содержится 29%, связанного с другими минералами - 71%. Проведенным минералогическим анализом установлено, что золото весьма мелкое и пылевидное, крупность золотин от 0,05 до 0,25 мм (преобладающая крупность -0,12 + 0,05 мм). Форма зерен золота комковидно-угловатая и пластинчатая. Золото в основном желтого цвета и только небольшая часть зеленовато-желтого. Поверхность большинства крупных золотинок изменена коррозией, некоторые из них покрыты тонкой пленкой гидроокислов железа, отдельные зерна окатанные. Проба золота по определению наиболее крупного слабокорродированного кристалла порядка 890.

Обработка титано-циркониевых песков в полупромышленных условиях производилась по схеме, включающей грохочение, дезинтеграцию, механическую оттирку, обесшламливание и флотацию. Селекция коллективного флотационного концентрата и доводка конечных концентратов проводились сочетанием магнитной и электрической сепараций с процессами флотации и гравитации на концентрационном столе. Наибольшая концентрация золота при этом наблюдалась в рутиловом концентрате и промпродуктах электро-сепарации немагнитной и магнитной фракций.

Заметная концентрация золота наблюдается также в цирконовом концентрате. Однако извлечение золота в эти продукты невысокое, а основное количество его теряется в кварцевых песках, по данным портала fishingby.com . Извлечение золота в коллективный флотационный концентрат составляет 22% от исходного или 75% от золота, находящегося в песках в свободной форме.

Опыт работы промышленных установок

На песках одной из россыпей Балтийского моря Московским горным институтом (МГИ) были проведены исследования на установке, смонтированной на борту земснаряда, для выяснения влияния морских волнений на процесс обогащения. На борту земснаряда были установлены гидроциклоны, струйные концентраторы и ленточный сепаратор трения. Два концентратора работали на основной операции с получением отвальных хвостов и черновых концентратов, которые перечищались на третьем концентраторе.

По схеме получается черновой концентрат с содержанием 45-60% тяжелой фракции и извлечением полезных минералов 81%. Результаты испытаний полностью подтвердили данные, полученные при обогащении морских песков на береговой установке.

Для доводки чернового концентрата в лабораторных условиях разработана схема с применением гравитации, магнитной и электрической сепараций с предварительным обжигом циркон-рутилового продукта. В дальнейшем в лабораторных условиях была разработана схема получения гравитационного концентрата с содержанием тяжелых минералов около 80-85%. Схема включала основную концентрацию песков на струйных концентраторах и четыре перечистки концентрата.

Освоение богатых подводных месторождений потребует меньших капиталовложений, чем разработка континентальных месторождений.