Появление целлофана в ссср (47 фото). Целлофан. История изобретения и производства Целлофан и полиэтилен в кулинарии

Из большого целлофанового пакета, который исследователь придерживает левой рукой, вода не испарялась в течение нескольких недель, а испарение жидкости из контрольных образцов наблюдалось уже через пару дней. Чарч модифицировал целлофан, технология производства которого была разработана в 1908 году.

«Целлофаном» иногда называют вообще любой прозрачный материал для пищевой (и не только) упаковки. На самом деле большинство полимерных материалов, которые применяются для упаковки, представляют собой полиэтилен или полипропилен - синтетические полимеры . Целлофан же - искусственный полимерный материал (полученный в результате химической модификации природных полимеров), его делают из целлюлозы , регенерированной из раствора вискозы . Если целлюлозу получают не в виде пленки, а в виде волокон, которые идут на изготовление тканого материала и затем ткани, эту ткань тоже называют вискозой . В данном случае модификация, правда, не приводит к изменению строения структурного звена целлофана и вискозного волокна по сравнению с природной целлюлозой, а происходит лишь укорочение полимерных цепочек.

Технология получения целлофана заключается в следующем: целлюлозосодержащее сырье - например, древесина, хлопок, пенька - проходит обработку раствором щелочи и дисульфида углерода , в результате чего целлюлоза вступает в химическую реакцию с образованием растворимого в воде ксантогената целлюлозы. Полученный щелочной раствор ксантогената целлюлозы, который и называют «вискозой» отделяют от примесей, содержащихся в целлюлозосодержащем сырье, с помощью фильтрования. Затем раствор продавливают через узкую продольную щель в ванну c раствором разбавленной серной кислоты и сульфата натрия , где ксантогенат целлюлозы разрушается с образованием целлюлозы. Этот процесс называется регенерацией целлюлозы. На следующих стадиях процесса получения целлофана пленку отмывают от производных серы, отбеливают и, чтобы она не была хрупкой, обрабатывают пластификаторами , понижающими ее хрупкость, например глицерином . Вискозное волокно получают практически так же, только раствор продавливают через круглые отверстия с малым диаметром и не подвергают пластификации. Таким образом, химическое строение и целлофана, и вискозного волокна полностью соответствует строению целлюлозы.

Изобрел целлофан швейцарский ученый и технолог производства текстиля Жак Эдвин Бранденбергер (Jacques Edwin Brandenberger). По легенде, в начале 1900-х годов во время посещения ресторана Бранденбергер увидел, как официант меняет скатерть, испачканную пролитым вином, и решил разработать легкое гибкое и водоотталкивающее покрытие для тканей, которое не впитывало бы разлитую жидкость, а отталкивало ее. Перепробовав различные способы нанесения концентрированного раствора вискозы на ткань, к 1908 году Брандербергер понял, что тонкая прозрачная пленка из регенерированной целлюлозы не может быть прочно закреплена на ткани, но при этом сама является перспективным материалом, после чего сосредоточился на ее изучении.

В 1912 году Бранденбергер изобрел аппарат для промышленного производства прозрачной пленки, которую он назвал «целлофаном» от слов «целлюлоза» и «прозрачный» (фр. «diaphane»). В 1913 году изобретатель открыл первую фабрику по производству целлофана в Париже. В 1923 году Бранденбергер продал права на авторство производства целлофана североамериканской компании «DuPont», которая с 1924 года стала производить его и в США. Одним из первых потребителей нового материала стала кондитерская компания «Whitman"s» , которая изготавливала из него фантики для конфет. Первоначально продажи целлофана в США были достаточно скромными из-за того, что материал, изготовленный по рецепту Бранденбергера, был влагопроницаемым и не мог применяться для упаковки товаров, для которых нужна была защита от влаги. Уильям Хэйл Чарч провел три года, разрабатывая способ получения влагонепроницаемого целлофана, и наконец в 1927 году подобрал условия обработки целлофана раствором нитроцеллюлозы , приводящие к получению целлофановой пленки, не пропускающей влагу. Влагонепроницаемый целлофан был выведен на рынок в 1927 году, в период с 1928 по 1930 год продажи материала увеличились в три раза, а в 1938 году на долю целлофана приходилось 10% от продаж Дюпона и около 25% от прибыли компании.

Такую популярность целлофановая пищевая упаковка получила потому, что она позволяла рассмотреть продукт, потрогать его или повертеть в руках, чтобы оценить его качество со всех сторон. Это, в свою очередь, понравилось продавцам: то, что покупатель имел возможность более детально ознакомиться с товаром, значительно увеличило количество так называемых случайных покупок, то есть покупок, совершаемых не по необходимости, а под воздействием мимолетных желаний. Покупать товары в прозрачной упаковке хотелось чаще, чем продукты, запакованные в оберточную пищевую бумагу или в картон. Кроме того, прозрачная упаковка из целлофана ассоциировалась с тремя качествами, важными для успешных продаж: блеском, чистотой и свежестью.

Целлофан производится до настоящего времени, хотя с 1960-х годов, с появлением технологии производства синтетических полимеров полиэтилена и полипропилена, он все реже и реже применяется для упаковки продуктов. Хотя, например, сигары, которые должны «дышать» при хранении, до сих пор упаковывают в целлофан, ведь полипропиленовая пищевая пленка и полиэтиленовые пакеты хоть внешне и напоминают целлофан, в отличие от него не пропускают газы. Целлофан также является полимерной основой для скотча , его применяют в качестве материала для полупроницаемых мембран в некоторых типах аккумуляторов, из целлофана изготавливают мембраны для диализа . Сегодня возрождается интерес к целлофану как материалу для пищевой упаковки, поскольку, в отличие от синтетических полимеров, целлофан биосовместим и разлагается в окружающей среде.

Аркадий Курамшин

Целлофан - прозрачный жиро- влагоустойчивый пленочный материал, получаемый из вискозы.

Целлофан получают из раствора ксантогената целлюлозы. Выдавливая раствор ксантогената в ванну с кислотой через фильеры, получают материал в виде волокон (вискоза) или пленок (целлофан). Сырьем для получения целлюлозы служит древесина.


Колбаса в целлофановой упаковке

Как известно, многие открытия совершаются случайно. Так, один из самых знаменитых материалов XX века был придуман и разработан в процессе решения совсем другой задачи. Химик и инженер Жак Бранденбергер хотел найти способ сохранить скатерть чистой, а нашел материал, совершивший революцию в упаковке пищевых продуктов.

Фундамент этой истории заложили британские химики Чарльз Кросс, Эдвард Беван и Клейтон Бидль, которые в 1890-х годах разработали и запатентовали надежный и безопасный способ производства "искусственного шелка", который они назвали вискозой. Природную целлюлозу обрабатывали сначала щелочью, а затем дисульфидом углерода, в результате чего получался растворимый ксантогенат целлюлозы. При подаче вязкого раствора через фильеры в кислотную ванну целлюлоза восстанавливалась в форме прочных прозрачных нитей.

Примерно в то же время Жак Бранденбергер (родившийся в 1872 году в Цюрихе) закончил Бернский университет и переехал во Францию, где устроился химиком в текстильную компанию.

Однажды в 1900 году Жак обедал в ресторане, и один из его коллег неловким движением опрокинул бокал красного вина на белоснежную скатерть. Пока официант менял скатерть, у Бранденбергера в голове окончательно оформилась идея, как можно было бы защитить скатерть от подобных инцидентов. Он предполагал, что, обработав ткань вискозой, можно сделать ее водоотталкивающей. Однако эксперимент потерпел неудачу. Высохнув, покрытая вискозой ткань огрубела и плохо сгибалась. К тому же покрытие оказалось непрочным: оно отслаивалось в виде тонкой прозрачной пленки.

Эта пленка заинтересовала Бранденбергера. Прозрачная, как стекло, но гибкая и прочная, она не пропускала воду, но впитывала ее и пропускала водяной пар. Материал выглядел столь многообещающе, что Бранденбергер потратил несколько лет для разработки метода его промышленного производства.

В 1912 году Жак Бранденбергер основал компанию La Cellophane (от французских слов cellulose - целлюлоза, и diaphane - прозрачный) для промышленного выпуска нового материала. Однако ни о какой массовости речь не шла - целлофан был недешев и использовался разве что в качестве упаковки для дорогих подарков.

В 1923 году Бранденбергер передал права на выпуск целлофана в США компании DuPont, и это решение оказалось судьбоносным. Через несколько лет сотрудник американской компании Хейл Черч, перепробовав более 2500 различных вариантов покрытий, смог устранить основной недостаток материала, сделав его непроницаемым не только для воды, но и для водяного пара. Это открыло целлофану широкую дорогу в пищевую промышленность.

К концу 1930-х годов DuPont получал 25% прибыли от продажи целлофана, и только с появлением полиэтилена в 1960-х этот материал перестал быть лидером рынка. Но и сейчас прозрачные полиэтиленовые пакеты часто по привычке называют целлофановыми.

Смотрите другие статьи раздела .

И греч. φᾱνός - светлый) - прозрачный жиро- влагоустойчивый плёночный материал, получаемый из вискозы .

Иногда целлофановыми неправильно называют упаковочные изделия (пакеты, товарную упаковку) из полиэтилена , полипропилена или полиэфиров .

История

Целлофан был изобретён Жаком Эдвином Бранденбергером, швейцарским текстильным инженером, между и 1911 годами . Он намеревался создать влагонепроницаемое покрытие для скатертей , спасающее их от пятен. В ходе экспериментов он покрыл ткань жидкой вискозой , но получившийся в результате материал был слишком жёстким для использования как скатерть. Однако покрытие хорошо отделялось от тканевой основы, и Бранденбергер понял, что ему найдется другое применение. Он сконструировал машину, производившую плёнку, которая была выпущена на рынок под маркой Cellophan. В 1913 году во Франции началось промышленное производство целлофана. После некоторых доработок целлофан стал первой в мире относительно устойчивой к воде гибкой упаковкой .

После разработки новых видов полимерных материалов в 1950-е годы роль целлофана существенно снизилась - он был практически полностью вытеснен полиэтиленом , полипропиленом и лавсаном . Однако значительно бо́льшая экологическая безопасность целлофана благодаря высокой скорости его биологического разложения и отсутствию вредных пластификаторов (глицерин физиологически и экологически безвреден) способствует возрождению интереса к этому упаковочному материалу .

Получение

Целлофан получают из раствора ксантогената целлюлозы . Выдавливая раствор ксантогената в ванну с кислотой через фильеры , получают материал в виде волокон (вискоза) или плёнок (целлофан). Сырьём для получения целлюлозы служит древесина .

Свойства целлофана

Показатели физико-механических свойств целлофана
  • Прочность при растяжении: 35-75 МН/м 2
  • Относительное удлинение при разрыве: 10-50 %
  • Стойкость к распространению надрыва: 2-20 сН
  • Прочность при продавливании по Мюллеру: 5,5-6,5 МПа
  • Прочность при ударе: 47 МН/м 2
  • Число двойных изгибов до разрушения: 2-6
Показатели физико-химических свойств целлофана
  • Плотность: 1,50-1,52 г/см 3
  • Гигроскопичность: 12,8-13,9 %
  • Температура начала разложения: 175-205 °С
  • Диэлектрическая проницаемость (при относительной влажности воздуха 65 %) в области частот 100 кГц: 5,3
Стойкость к действию
  • сильных кислот - плохая
  • сильных щелочей - плохая
  • жиров и масел - умеренная
  • органических растворителей - хорошая
Водостойкость
  • водопоглощение за 24 ч: 45-115 %
  • при высокой влажности - умеренная
  • Стойкость к солнечному свету - хорошая
  • Теплостойкость: +130 °С
  • Морозостойкость: −18 °С
  • Горючесть - плавится

Применение

Целлофан в настоящее время изредка используется как упаковочный материал в виде внешней прозрачной плёнки, а также для упаковки дорогих сортов пищевых, кондитерских продуктов, для изготовления оболочки для колбас и сыров, мясо-молочных изделий. При этом сегодня в этой сфере в основном используются БОПП-плёнки , производимые из полипропилена и внешне похожие на целлофан.

Основной недостаток целлофановой упаковки: при надрыве она дальше рвётся практически без усилия, что зачастую неудобно, особенно − для больших фасовок сыпучих продуктов, печенья и т.п.

Целлофан – экологически безопасный упаковочный материал. Из него изготавливают эластичную пленку нескольких видов, а также пакеты, которые используют для упаковки кондитерских изделий, парфюмерной и табачной продукции, молочных и мясных изделий. Преимущество материала — возможность осматривать упакованный товар, не прикасаясь к нему руками. Также его применяют в декоративных целях, изготовлении детских и елочных игрушек.

Что такое целлофан, целлофановый пакет и пленка

Целлофан – это пленочный материал, получаемый в процессе раствора вискозы в разбавленном растворе гидроксида натрия, используемый для упаковки продуктов питания.

Вискозная пленка устойчива к жирам, имеет низкую газопроницаемость, повышенную гигроскопичность и набухаемость в воде. Благодаря этим свойствам она способна впитывать в себя лишнюю влагу, жировые компоненты, не допускать проникания воздуха внутрь упаковки.

Целлофан (иногда его называют салофан) обладает жиро- и влагоустойчивыми свойствами. Его используют при изготовлении целлофановых пакетов и пленок, а также вискозной оболочки для мясной продукции.

Интересно : Целлофан был изобретен в начале ХХ века швейцарским текстильным инженером Бранденбергом, который, в ходе научного эксперимента, смог создать вискозную пленку. Впоследствии он сконструировал специальный аппарат, производивший целлюлозную пленку. После этого началось массовое промышленное изготовление упаковочного материала из целлюлозы во многих странах Европы. Механизм, занимавшийся его изготовлением, приобрел название Cellophane.

Целлофановая пленка — один из самых дешевых материалов, применяемых в пищевой промышленности для упаковки и обтяжки продуктов питания. Она прозрачна, устойчива к действию концентрированных содовых и разбавленных кислотных растворов. Этот полимер природного происхождения обладает свойствами, позволяющими сохранять вкусовые качества продукта длительное время. Применяемая в промышленности пленка бывает лакированной и обычной, имеет толщину от 20 до 40 мкм.

Целлофановый пакет – это фасовочный упаковка, изготовленная из целлофановой пленки.

Изначально такие пакеты предназначались для упаковки продуктов питания из-за своей экологичности и безопасности.

Из чего делают целлофан

Производство целлофана – долгий и трудоемкий процесс. Он реализовывается с помощью сложного механизма – целлофановой машины. Целлофан делают из целлюлозы, путем двусторонней коагуляции и последующего разложения зрелой вискозы. Полученную в результате такого процесса пленку промывают, освобождают от серы, при необходимости — отбеливают.

Целлофановая пленка жироустойчива, не пропускает воздух. С целью повышения влагостойкости и термосвариваемости вискозную пленку покрывают лаком. Таким образом целлофан делится на обычный и лакированный – каждый из этих видов имеет высокую практичность. Существенное практическое значение имеет сочетание нескольких видов целлофана между собой.

Применение целлофана

В обычные целлофановые пакеты упаковывают сухие продукты – хлебобулочные и кондитерские изделия, а также свежие и маринованные овощи. Для повышения качества и износостойкости пленку лакируют. Для этого используют нитроцеллюлозный или полихлорвиниловый лак. Процесс лакирования позволяет уменьшить гигроскопичность пакета, тем самым сделав его более водостойким, и повысить стойкость при нагревании. К подобным пленкам относится и пищевой целлофан в рулонах на целлюлозных гильзах.

Целлофановые пакеты – весьма популярная, но, к сожалению, на данный момент достаточно редкая упаковочная тара. До ее изобретения продукты питания упаковывали в совершенно непрозрачную бумагу, поэтому момент изобретения целлофановых пакетов и упаковки в целом стал настоящим промышленным взрывом. Несмотря на это, небольшие целлофановые пакетики и пакеты тяжело назвать очень прочными. Места разрыва легко расходятся и не подлежат устранению.

Также из целлофана производят оболочки для мясных изделий, например, колбасы. Колбасные изделия выпускаются в вискозных оболочках, являющимися, по сути, склеенным целлофаном. Такая оболочка чаще всего носит название вискозно-армированной, ее промышленное производство было запущено в начале XX века на территории США и Германии. Такая оболочка называется фиброузной. Она имеет разные степени адгезии (прилипания), а также обладает различными свойствами, например, может препятствовать развитию плесени.

Чем отличается целлофановый пакет от полиэтиленового

Из-за схожего внешнего вида целлофановую упаковку очень часто путают с полиэтиленовой. Однако это разные вещества, имеющие различный состав и лишь внешне немного похожие друг на друга. Целлофан – это природный, экологически чистый материал, который получают при переработке целлюлозы. Полиэтилен изготавливается с помощью химического синтезирования газообразного углеводорода этилена.

Целлофановые и полиэтиленовые пакеты имеют несколько отличий:

  1. Целофановый пакет — жесткий и шуршащий, полиэтиленовый напротив – мягкий и, по тактильным ощущениям, кажется жирным.
  2. При изготовлении целлофанового пакета используется чистый глицерин, поэтому конечная упаковка имеет сладковатый вкус.
  3. При воздействии высоких температур целлофановый пакет съеживается в комок, полиэтиленовый – горит и дымится.
  4. На целлофане краска держится гораздо дольше и крепче, чем на полиэтилене.

Дешевый полиэтилен активно используется с середины ХХ века, что привело к постепенному вытеснению целлофановой упаковки. Процесс производства материала из целлюлозы является гораздо трудоемким и затратным, нежели процесс изготовления полиэтилена.

Взаимодействие с окружающей средой, утилизация целлофана

Целлофан – экологически безопасное вещество, не требующее длительного разложения и специфичной утилизации. Для мировой экологии целлофановая тара менее опасна, чем, например, полиэтиленовая, поскольку является натуральным материалом и способна к безопасному гниению. Полиэтиленовые пакеты не поддаются естественному разложению, чем наносят огромный вред, загрязняя окружающую среду. Концентрация токсичных веществ в полиэтиленовых упаковках достаточна для их отрицательного воздействия на окружающую среду.

Для сравнения – срок утилизации полиэтилена не обозначен, а его существование в природе исчисляется несколькими сотнями лет. Целлофан же, как продукт переработки целлюлозы, разлагается в течении 4 лет, не оставляя после себя токсичных веществ.

Несмотря на достаточную практичность и безопасное влияние на окружающую среду, производство целлофана вытеснено производством полиэтиленовой упаковки – гораздо более дешевого, но при этом – экологически опасного материала. Существует серьезный вопрос запрета использования полиэтилена и замены его на целлофан. Такие инициативы уже приняты во многих странах или же рассматриваются на государственном уровне.

XX век был полон важнейших научно-технических открытий, многие из которых так или иначе используются и по сей день. Какие изобретения прошлого столетия больше всего повлияли на дальнейший ход истории и какое развитие они получили в XXI веке, читайте в новом цикле статей сайт «100 лет инноваций».

В первом материале серии мы расскажем об изобретениях, появившихся в 1910-х годах предыдущего столетия.

Первый конвейер на предприятии Генри Форда

Важность этого изобретения можно сравнить с разработкой первых паровых двигателей — оно произвело настоящую промышленную революцию и позволило существенно сократить сроки и стоимость изготовления множества вещей. Речь идет о массовом поточном производстве — конвейере.

Первым шагом на пути его создания в 1901 году стала разработка одной из первых модификаций сборочной линии американской компанией Oldsmobile. Но внедрить подобную технологию в массовое производство вышло лишь через 12 лет, когда известный американский предприниматель Генри Форд стал использовать ее в автомобилестроении.

Генри Форд. Источник: molomo.ru

В начале XX века автомобиль считался не простым средством передвижения для каждого, а дорогой «игрушкой», показывающей высокий уровень достатка своего владельца. Политика Форда в этом плане была совершенно иной — он хотел сделать автомобили доступными как можно большему количеству людей.

Предприниматель решил сосредоточиться на выпуске одной-единственной модели автомобиля — Ford Model T. Он особо подчеркивал, что Model T — простая и надежная машина, которую позволить себе могут не только богачи, но и простые американцы.


Купив в пригороде Детройта большой участок земли, в 1910 году Форд построил там новый завод по изготовлению своих «народных» автомобилей.

Изначально различные детали и узлы Ford Model T на нем перемещались на специальных тележках. Вскоре была выстроена короткая линия для окончательной сборки машин, где части перемещались мимо рабочих с помощью механической силы.

В 1913 году конвейерное производство начали применять для изготовления определенных деталей двигателя (а именно магнето), а позже его стали использовать для сборки практически всех частей автомобиля.


Впоследствии Форд усовершенствовал свою конструкцию и подстроил сборочную линию под средний рост рабочего на заводе, тем самым облегчив процесс сборки — работникам теперь не приходилось лишний раз наклоняться или тянуться за нужным инструментом, что увеличило и без того высокую производительность труда.


В результате на изготовление одного Ford Model T стало затрачиваться порядка двух часов — вместо прежних двенадцати.

Переоснастив конвейерами все свои остальные заводы и постоянно наращивая темп производства, Форд смог каждый день выпускать порядка 10 тысяч автомобилей! Все они сумели найти своего покупателя, что сделало Форда одним из самых богатых и знаменитых предпринимателей США.

Так, в 1900 году в США один автомобиль приходился примерно на 9000 человек, а в 1929 году — на каждые 5 человек. К этому времени в Штатах присутствовало около 26 миллионов стандартных «Фордов Т», отличавшихся только цветом и формой кузова.


Позже примеру Форда последовали промышленники из других областей, которые внедряли конвейеры в различные сферы производства. В итоге это позволило многим развитым государствам подготовиться к механизации, автоматизации и роботизации производства 1950−1990-х годов.

Нержавеющая сталь

Разработка не подверженного окислению и, как следствие, порче металла велась многими учеными по всему миру еще в конце XIX — начале XX веков, но официальным изобретателем этого сплава считается британский металлург Гарри Брирли (Harry Brearley).

В 1913 году он проводил исследования стальных сплавов, которые предполагалось использовать для изготовления оружейных стволов. Ученый действовал путем проб и ошибок, проверяя на прочность сплавы с различными присадками.

В процессе своих экспериментов Брирли заметил, что одна из изготовленных еще месяц назад отливок не покрылась ржавчиной и сохранилась в отличном состоянии. Этот сплав содержал 85,3% железа, 0,2% кремния, 0,44% марганца, 0,24% углерода и 12,8% хрома — так им была открыта первая в мире разновидность нержавеющей стали.

Хоть получившийся сплав для оружейных целей не подошел, Гарри сразу понял — этот материал найдет много других вариантов применения. Исследователь решил использовать свою разработку для создания ножей и столовых приборов, но его работодатели и другие металлурги разработкой не заинтересовались и сочли, что подобное производство потребует слишком больших вложений.

Позже Гарри встретил своего школьного товарища — Эрнеста Стюарта, который работал в компании по производству столовых приборов. Сначала он не поверил в существование не подверженного ржавчине металла. Даже после создания первых опытных образцов ножей, произведенных по новой технологии, Эрнест не счел их пригодными для продажи — они очень быстро тупились.


Так сегодня выглядит современный нож из нержавеющей стали

Впоследствии им все же удалось подобрать режим нагрева, при котором сталь поддавалась обработке, при охлаждении не становилась хрупкой и изделия из которой хорошо затачивались. Свое изобретение они назвали «нержавеющей сталью» и в 1915 году запатентовали его в Канаде, а в 1916 году — в США.

Элвуд Хейнс

Примерно в то же время американец Элвуд Хейнс (Elwood Haynes) создал свою версию «нержавейки», которая отличалась более высоким содержанием углерода (обеспечивающего твердость при закалке) и другой кристаллической решеткой. Элвуд стремился создать сталь для изготовления станочных резцов и фрез, так что подобные свойства его сплава явились как нельзя кстати.

После череды судебных тяжб между ним и Брирли о первенстве создания нержавеющей стали они пришли к согласию и создали совместное предприятие The American Stainless Steel Company в Питтсбурге.

Уже намного позже стали хейнсовского типа стали называть мартенситными, а стали, восходящие к сплаву Брирли, — ферритными. Их и другие открытые впоследствии разновидности нержавеющей стали сегодня применяют практически во всех сферах нашей жизни — медицине, строительстве, нефтегазовой промышленности и других не менее важных отраслях.

Целлофан

Создателем целлофана считается химик швейцарского происхождения — Жак Бранденбергер (Jacques E. Brandenberger).

По легенде, идея создания подобного материала пришла к нему случайно. Однажды он обедал в ресторане вместе со своими коллегами, и один из них разлил бокал красного вина на белую скатерть. Пока ее меняли, Жак размышлял над тем, как можно было бы спасти скатерть от такого небрежного обращения.

Он предположил, что, если обработать ткань вискозой, ее получится сделать водоотталкивающей. Но такой эксперимент не увенчался успехом — высохнув, покрытая вискозой ткань сильно огрубела и плохо сгибалась. Вдобавок покрытие легко отслаивалось в виде тонкой прозрачной пленки.

Эта пленка заинтересовала Бранденбергера — прозрачная, как стекло, и в то же время гибкая и прочная, она не пропускала воду, но впитывала ее и пропускала водяной пар. Получившийся материал выглядел достаточно многообещающе, и Жак потратил несколько лет на разработку метода его промышленного производства.

В 1912 году он основал компанию La Cellophane (от французских слов cellulose — целлюлоза, и diaphane — прозрачный) и выпустил машину для промышленного выпуска нового материала. Но массовым продуктом целлофан так и не стал — его производство обходилось слишком дорого, и подходил он лишь для упаковки дорогих подарков.

В 1924 году Бранденбергер продал права на выпуск своего изобретения американской компании DuPont — как оказалось, это решение стало судьбоносным. Сотрудник этой компании, Хейл Чарч (Hale Charch), смог существенно улучшить материал и в итоге исправил его главный недостаток — он сделал его непроницаемым не только для воды, но и для водяного пара.


Хейл Чарч

Это открыло целлофану дорогу в пищевую промышленность в качестве универсальной упаковки, в которой еда долго оставалась свежей.

Только с появлением полиэтилена в 1960-х этот материал перестал быть лидером рынка. Но и сейчас прозрачные полиэтиленовые пакеты часто по привычке называют целлофановыми.

Танки

В начале прошлого века развивались не только гражданские, но и военные технологии. Одним из важнейших изобретений того времени стали танки.

В 1914 году, с началом Первой мировой войны, британский полковник Эрнест Свинтон (Ernest Dunlop Swinton) впервые заявил о необходимости создания подвижной и защищенной боевой машины, обладающей огневой мощью и способной передвигаться по пересеченной местности через окопы, рвы и проволочные заграждения.

Вскоре на базе гусеничного трактора «Холт» разработали прототип первой подобной машины, получившей название «Маленький Вилли» и ставшей первым в мире танком. В 1915 году он прошел первые испытания, но для боевых действий готов еще явно не был.

В феврале 1916 года новый улучшенный танк под названием «Большой Вилли» успешно прошел ходовые испытания — он смог преодолеть широкие окопы, свободно двигался по вспаханному полю, перебирался через стенки и насыпи высотой до 1,8 метра и окопы до 3,6 метра.


Танк «Большой Вилли» на испытаниях 2 февраля 1916 года. Фото: pro-tank.ru

В сентябре того же года танк Mk 1 (официальное название «Большого Вилли») был впервые применен во время сражения с немцами на реке Сомма — потери англичан оказались в 20 раз меньше обычных.

Сам танк весил порядка 28 тонн и развивал скорость всего в 4−6 км/ч — как у пешехода. Экипаж состоял из 8 человек. Каких-либо внутренних средств связи в нем предусмотрено не было. Для передачи информации использовались флажки и сигналы лампой, для дальней связи применялась голубиная почта.


Член экипажа британского танка Mark I выпускает почтового голубя через бойницу. 1918 год / historyporn. d3.ru

Первоначально эти танки также разделялись на «самцов» и «самок». Первые были вооружены пушками и пулеметами, вторые — только пулеметами.

В последующие годы англичанами было выпущено еще несколько модификаций «Большого Вилли». Каждая новая версия была лучше предыдущей.

Постепенно танки были приняты на вооружение и другими воюющими сторонами. К примеру, французский легкий танк Рено FT-17 (на фото ниже) стал одной из самых успешных боевых машин Первой мировой войны и использовался вплоть до начала Второй мировой.

Он весил около 6 тонн, требовал экипажа всего из двух человек, вооружался пулеметом, поворотной пушкой и развивал скорость до 9,6 км/ч. Также на нем впервые была применена компоновка основных узлов, которая до сих пор остается классической: двигатель, трансмиссия, ведущее колесо — сзади, отделение управления — спереди, вращающаяся башня — по центру.

В России параллельно с другими странами — участницами военных действий также велись работы по созданию собственного боевого танка.

В 1914-1915 годах Александром Пороховщиковым был разработан прототип вездеходной машины, которую также принято считать первым русским танком — но по своей сути из-за отсутствия вооружения и брони она им не являлась.


«Вездеход» Пороховщикова на испытаниях, 1915 год. За рулем машины в фуражке с очками — лично А. А. Пороховщиков

После нескольких не очень успешных испытаний проект по созданию этой вездеходной машины был закрыт — на вооружение этот «танк» так и не попал.

В Германии также пытались освоить новое оружие. В 1917 году фирма «Бремерваген» начала производство танков A7V, однако их массовый выпуск немцы наладить так и не смогли.


Танк A7V. Фото: militaryfactory.com

Сегодня танки по-прежнему являются одной из главных боевых машин практически любой армии мира и оснащаются новыми высокотехнологичными средствами защиты и нападения, современной электроникой, оптикой и куда более мощными двигателями.

Партнер проекта:

Компания Husqvarna является одним из мировых лидеров в производстве садовой и строительной техники. Более 325 лет мы производим инновационные продукты, непрерывно внедряя новые технологии.